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Abstract: Energy-localized orbitals are used to define localized distributions of positive charge and an energy par­
titioning of ab initio molecular orbital wave functions in the localized representation is derived. This partitioning 
is specialized to the INDO approximation using results from Ruedenberg's theory of chemical bonding. An in­
terpretation is given for the internal rotation barrier in ethane with particular emphasis on the effects of geometry 
optimization. It is found that the origin of the barrier can be ascribed to one-electron interference energy dif­
ferences among vicinal hydrogens, and that these are related to hyperconjugate effects. 

The algorithm for energy localization reported by 
Edmiston and Ruedenberg2 provides a computa­

tional method for the transformation of canonical 
molecular orbitals3 to orbitals which are equivalent in a 
quantum mechanical sense and give rise to individual, 
chemically familiar electron distributions. These are 
the localized molecular orbitals which provide, e.g., 
lone pairs and bond orbitals in a nonarbitrary way 
within the mathematically tractable molecular orbital 
theory. 

In the present paper, each localized orbital is used to 
define a localized distribution of nuclear charge which, 
though arbitrary, is physically sensible. Together, the 
localized orbital and its induced positive distribution are 
called a localized charge distribution. The general 
form of the latter with a corresponding energy parti­
tioning and interpretation for closed-shell wave func­
tions is described in section I. In section II this parti­
tioning is specialized to the semiempirical INDO 
method,4 and in section III an interpretation is given 
using results from Ruedenberg's description of chem­
ical bonding.5 

A clear understanding of the barrier to internal rota­
tion in ethane has been a long-standing problem in 
quantum chemistry. Part of the elusive nature of bar­
rier understanding is undoubtedly due to the fact that 
energy differences, often rather small and numerous, are 
involved. The work of Epstein and Lipscomb6 makes 
this elusiveness especially clear. We feel, therefore, 
that one must be particularly attentive to physical, or 
qualitative, ideas which may be used to support the con­
clusions obtained from any calculations. 

Although it has recently been shown6-9 that energy 
optimization of the geometry can have a considerable 
effect on internal rotation barriers, it is usual to allow 
only the dihedral angle to vary.10-17 As a result, most 
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(4) J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys., 

47, 2026 (1967). 
(5) K. Ruedenberg, Ren. Mod. Phys., 34, 326 (1962). 
(6) I. R. Epstein and W. N. Lipscomb, J. Amer. Chem. Soc, 92, 6094 

(1970). 
(7) M. S. Gordon, ibid., 91, 3122 (1969). 
(8) O. Sovers and M. Karplus, J. Chem. Phys., 44, 3033 (1966). 
(9) A.Veillard, Chem. Phys. Lett., 3,128 (1969). 
(10) W. L. Clinton, J. Chem. Phys., 33, 632 (1960). 

conclusions concerning the barrier in ethane begin with 
the assumption that the nuclear repulsions (as well as 
electron repulsions) are much larger in the eclipsed 
rotamer. In section IV of this paper, the partitioning 
mentioned in the preceding paragraph is applied to the 
INDO ethane barrier, and we find a simple explanation 
which holds for both the geometry-optimized and 
frozen-frame barriers. Emphasized are the effects of 
geometry optimization on the various energy terms, and 
comparisons between INDO and ab initio calculations 
are given whenever possible. 

1. General Theory 

Consider a molecule which has N occupied molecular 
orbitals and M atoms. If ZA is the atomic number of 
atom A and X, is the /th energy-localized molecular or­
bital, one can often assign localized positive distribu­
tions to the V s in the following manner 

Z1(A) = 2 if X4 is a lone-pair (Ip) or inner-shell 
(is) orbital localized on atom A 

= 1 if X4 is a bond orbital (bo) localized on (1) 
atom A 

= 0 otherwise 

where Z4(A) is that part of the positive charge on atom 
A assigned to X( and 

SZ4(A) = ZA (2) 
i 

While the types of localized orbitals described in (1) are 
those most frequently encountered, other cases do arise 
and may be dealt with straightforwardly, e.g., for BF 
where, in addition to one (inner shell) and one lone-
pair orbital on each nucleus, there occur three bond 
orbitals between B and F;18 the nuclear partitioning 
would be Zj1(B) = 2, Zlp(B) = 2, Zbo(B) = Vs, Z11(F) = 
2, Zlp(F) = 2, Zbo(F) = Vs. Once the Z,(A)'s are de­
fined, it is possible to partition any molecular expecta­
tion value of interest into localized contributions. 

(U) M. Karplus and R. G. Parr, ibid., 38, 1547 (1963). 
(12) J. P. Lowe, ibid., 45, 3055 (1966). 
(13) E. Clementi and D. R. Davis, ibid., 45, 2593 (1966). 
(14) W. H. Fink and L. C. Allen, ibid., 46, 2262 (1967). 
(15) R. M. Pitzer, ibid., 41, 2216 (1964). 
(16) K. Ruedenberg, ibid., 41, 588 (1964). 
(17) J. A. Pople and G. A. Segal, ibid., 43, S136 (1965). 
(18) C. Edmiston and K. Ruedenberg, ibid., 43, S97 (1965). 
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The total energy, E, for example, may be written as 

E= 2 > i (3) 

within the Born-Oppenheimer approximation, where 

Zi = Ti + E»W 
J = I 

(4) 

is the total energy of the /th distribution (X4 plus Zt(A) 
for all atoms A) 

T, = ^ 4 JV 1 X 4 ( IX- 1AVi2Mi) (5) 

is the kinetic energy of the /th distribution in atomic 
units 

V11 = Vti + Gtl + gu (6) 

is the potential energy of interaction between distribu­
tions / and j , and vit and vtj are the intra- and interdis-
tribution contributions, respectively, to the total poten­
tial energy of distribution /. The terms on the right-
hand side of eq 6 are 

/

M 
ClK1E[P4(I, I)Zj(A) + 

A = I 

p / 1 , I)Z4(A)](IARAO (7) 

Gu = 1J2JdV1JdVs(Vm)[Pt(I, l) X 

p/2 , 2) -V2Pi(I, 2)Pj(l, 2)] (8) 

(9) Ei. •/,£ ^-imv 
A = I B ^ A R A B 

i?Ai is the distance between atom A and electron 1, r12 is 
the distance between electrons 1 and 2, i?AB is the inter-
nuclear distance, and 

P4(I, 2) = NMVU2) (10) 

with Nt = the occupation number of X4, is the electron 
density of X4. Equations 7, 8, and 9 represent the at­
tractive electrostatic energy, electron repulsion energy, 
and nuclear repulsion energy, respectively, between dis­
tributions /and j . 

II. Approximate Localized Orbitals 

When approximate localized orbitals are used, it may 
no longer be possible to obtain the general inter- and 
intradistribution partitioning. An example is fur­
nished by the INDO valence-orbital approximation4 

employed later in this work. 
As in all valence-orbital theory, the core charges 

QA = ZA — 2 if A is not hydrogen 

= ZA if A is hydrogen 
(H) 

replace the ZA and thereby the normalization condition 
in (2) becomes 

expansion coefficient, and 5 y is the Kronecker delta. 
In the INDO approximation, (4) is written as 

M M L N \ 

= E ^(A) + E Z WA, B) + E Vi}(A, B)\ 
A = I A = I B ^ A I . J = I ) 

+ 
Z(Gt, + gu) (14) 

> = i 

where 

U{(A) = E « V ) ' f d F W l ) [ - 7 2 V i ' -

EeXAViJA 1 ^(I) = E ( C / ) 2 ^ (15) 
3 H 

ft(A, B) = EEC^C/JdKlXM(l) J-V2Vi2 -

nexA)ARAi + GXB)//?BJ|X/I) = 

E E c / c a . , (16) 
and 

F0(A, B) = - EJdF 1 x , 2 ( l ) / /?Bi[(CMm<B) + 

(CJYQSM (17) 

The subscript A on a summation means that the sum is 
to be taken over all basis orbitals on atom A. 

Since the matrix elements U1111, and /3M„ are explicitly 
parametrized, the partitioning employed in (5)-(7) is un­
workable. The parametrization does not affect, how­
ever, the partitions given by (8)—(17). The remaining 
energy terms, Vi1(A, B), Gtj, and gtj are obtained di­
rectly from the corresponding INDO expressions.4 

III. Interpretation of the INDO Partition 
The quantities Gti and gtj admit the same interpre­

tation previously given and will not be discussed fur­
ther. In order to interpret the one-electron terms, we 
shall use the description of bonding originated by 
Ruedenberg.5 This description employs quasiclassical 
densities which, in analogy with the densities of classical 
electrostatics, may be superposed to form new densities 
and interference densities which occur in any wave 
theory and represent an enhancement (constructive in­
terference) or attenuation (destructive interference) 
of phase. In quantum mechanics the waves are 
matter waves, and interference corresponds to build­
up or depletion of matter (which at present may be 
conveniently discussed as an accumulation or deple­
tion of negative charge). Ruedenberg developed these 
ideas for both the density and pair density of general 
antisymmetric wave functions,6 but we shall herein be 
concerned only with the density partitioning. 

Application of Ruedenberg's distribution parti­
tioning6 to our orbital densities gives 

Pi(l,2) = p4
c l(l ,2) + Pi I(l,2) (18) 

ECi(A) = g A (12) where 
i = 1 

with N now the number of valence orbitals. 
Each localized valence orbital has the form 

Xi = E X M C ^ E W / = 5tj (13) 

where x„ is a Slater-type orbital (STO), C11* is an LCAO 

M A A 

PiC1(l, 2) = ^ E E E Q 1 C / x , ( D x X 2 ) (19) 
A - I o p 

is the quasiclassical orbital density, and 
M A B 

PiV, 2) = AT4 E E EEC/CVx,( l )xX2) (20) 
A = I B ^ A n i> 
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Staggered OPT 
Eclipsed OPT 
Staggered MBLD 
Eclipsed MBLD 
Exptl6 

Rcc, A 

1.46 
1.46 
1.54 
1.54 
1.536 

Res, A 

1.12 
1.12 
1.09 
1.09 
1.108 

ZHCC, deg 

112.2 
112.7 
109.5 
109.5 
110.1 

ZHCH, deg 

106.6 
106.1 
109.5 
109.5 
108.8 

OPT 
MBLD 
Exptl6 

Nuclear 
repulsion 

-7 .85 
4.68 

Electron 
repulsion 

-8 .48 
4.74 

Barrier 

2.25 
2.20 
2.875 

Energies are in kilocalories per mole. b W. J. Lafferty and E. K. Plyler, J. Chem. Phys., 37, 2688 (1962). 

is the orbital interference density. It should be noted 
that the quasiclassical density is a superposition of 
atomic contributions, whereas the interference density 
is due only to diatomic terms and is short range in 
character; i.e., the atoms involved must interfere, or 
overlap. (N. B. Even orthogonal functions may 
overlap; only their inner product vanishes.) Moreover, 
even though the INDO interference and overlap distri­
butions are identical (owing to the neglect of differ­
ential overlap) p / (1, 2) is not to be generally interpreted 
as an overlap distribution. This is discussed in detail by 
Ruedenberg.5 

The one-electron quasiclassical INDO energy con­
sists of two parts, the one-center energies 

0.5° in the HCH angles). Both calculations account 
for about 75% of the experimental barrier and predict 
that the barrier due to nuclear repulsion is similar to 
that due to electron repulsion. A striking difference, 
however, is provided by the fact that in the OPT cal­
culation both repulsion barriers (electron and nuclear) 
favor the eclipsed rotamer, whereas the MBLD repul­
sion barriers favor the staggered rotamer. Thus, ge­
ometry optimization, while leaving the total barrier vir­
tually unchanged, has introduced a fundamental differ­
ence within that part of the barrier due to repulsive 
interactions. The former result has been known to ob­
tain within the CNDO/2 theory21 and Stevens22 and 

ut = E ut(A) 
A = I 

(21) 

and the two-center electron-nucleus attraction energy 

Vu = E E V1IK, B) 
A = I B ^ A 

(22) 

which may be either inter (/ ^ j) or intra (/ = j) in 
character. Equations 21 and 22 follow straightfor­
wardly from the results of the preceding paragraph and 
the INDO parameterization. Similarly, the one-elec­
tron interference energy for the /th localized distribu­
tion is 

Pt = E E &(A, B) 
A = I B ^ A 

(23) 

and, as such, it is the prototype of those terms " . . . 
which represent the primordial source for the positive or 
negative stabilization energy which leads to chemical 
binding and antibinding."6 

IV. Analysis of Energy Barrier in Ethane 

Preliminary. Two calculations were undertaken 
for ethane, one in which the geometry was obtained by 
energy optimization (OPT) and one in which the geom­
etry was assigned using the model builder (MBLD) 
described previously.1920 The numbering of the atoms 
is the same in each case and is given in Figure 1. 
Geometries, barriers, and repulsion energy differences 
are shown in Table I. (Throughout this work, we 
obtain energy differences by subtracting the energy 
term for staggered ethane from the corresponding term 
for eclipsed ethane.) 

It is found in the OPT calculation that, in passing 
from the staggered to the eclipsed isomers, the only ge­
ometry changes apart from the dihedral angle are in­
creases of 0.5° in the HCC angles (and decreases of 

(19) J. A. Pople and M. Gordon, /. Amer. Chem. Soc, 89, 4253 
(1967). 

(20) M. Gordon and J. A. Pople, Quantum Chemistry Program 
Exchange, Program No. 135. 

2VB ®/ 

f". & *&. 

Figure 1. Choice of coordinate system and numbering of atoms 
and bonds in ethane. 

Epstein and Lipscomb6 have recently demonstrated it 
in the ab initio case. The latter authors, using Stevens'22 

results, have also pointed out that the various energy 
components of the barrier are strongly affected by ge­
ometry optimization. In particular, they found that the 
nuclear repulsion barrier favors the eclipsed isomer by 
about 70 kcal/mol, or ten times our result. The funda­
mental nature of this difference follows from the results 
of Clinton10 who, using the virial theorem for poly­
atomic molecules, was able to show quite simply that 
for an internal rotation the equalities, total barrier = 
V2 potential barrier = —kinetic barrier, must hold. 
He then showed that in ethane—without geometry op­
timization—the total barrier is closely one-half the nu­
clear repulsion barrier, and thereby remaining potential 
energy contributions to the barrier cancel. Our re­
sults, and also those of Stevens,22 suggest that this last 
fact is no longer true when the geometry is optimized. 
We contend, therefore, that any interpretation of the 
ethane barrier which assumes that the nuclear repulsion 
energy is lower in the staggered form is likely to be un­
realistic. This does not imply, however, that calcula­
tions on ethane undergoing frozen-frame rotation 
necessarily give unrealistic explanations of the barrier, 
as we shall see below. 

(21) J. A. Pople and G. A. Segal, J. Chem. Phys., 44, 3289 (1966). 
(22) R. M. Stevens, ibid., 52, 1397 (1970). 
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Table II. Localized Orbitals in Ethane" 

Atomic 
orbitals 

Q(2s) 
Ci(2Pl) 
Ci(2ps) 
Q(2p0 
H2 

H3 

H4 

C5(2s) 
C,(2px) 
C5(2p,) 
Q(2p,) 
H6 

H, 
H8 

° Units are 

Staggered OPT 
1 

0.3484 
0.5563 
0.0000 

- 0 . 2 3 0 6 
0.7128 

- 0 . 0 1 1 5 
- 0 . 0 1 1 5 
- 0 . 0 0 5 3 

0.0632 
0.0000 

- 0 . 0 0 7 0 
- 0 . 0 1 9 3 
- 0 . 0 1 9 3 

0.0535 

(bohr)-V«. 

4 

0.3927 
0.0000 
0.0000 
0.5880 

- 0 . 0 0 4 6 
- 0 . 0 0 4 6 
- 0 . 0 0 4 6 

0.3927 
0.0000 
0.0000 

- 0 . 5 8 8 0 
- 0 . 0 0 4 6 
- 0 . 0 0 4 6 
- 0 . 0 0 4 6 

Eclipsed OPT 
1 

0.3476 
0.5568 
0.0000 

- 0 . 2 3 0 9 
0.7128 

- 0 . 0 1 1 0 
- 0 . 0 1 1 0 
- 0 . 0 0 5 5 

0.0624 
0.0000 

- 0 . 0 0 7 1 
0.0291 
0.0291 

- 0 . 0 4 2 9 

4 

0.3949 
0.0000 
0.0000 
0.5865 

- 0 . 0 0 5 4 
- 0 . 0 0 5 4 
- 0 . 0 0 5 4 

0.3949 
0.0000 
0.0000 

- 0 . 5 8 6 5 
- 0 . 0 0 5 4 
- 0 . 0 0 5 4 
- 0 . 0 0 5 4 

Staggered MBLD 
1 

0.3577 
0.5588 
0.0000 

- 0 . 2 1 9 0 
0.7115 

- 0 . 0 1 2 3 
- 0 . 0 1 2 3 
- 0 . 0 0 5 5 

0.0518 
0.0000 

- 0 . 0 0 4 1 
- 0 . 0 1 5 8 
-0 .0158 

0.0441 

Table III. Repulsive and Quasiclassical Attractive Electrostatic Bond Interactions" 

AF1; 
AG1; 
Ag1; 
AiJ11 

AK4; 
AG4, 
Ag4; 
A«4; 

AF1; 
AG1; 
Ag11 

AiJ1; 
AF4; 
AG4; 
Ag4; 
AiJ4; 

AC1; 
AG4; 

1 

- 1 . 3 
1.5 
0.0 
0.2 
7.0 

- 3 . 7 
- 3 . 5 
- 0 . 2 

- 1 . 0 
2.0 
0.0 
1.0 
0.4 
0.2 
0.0 
0.6 

5.6 
0.2 

2 

- 8 . 9 
5.7 
5.3 
2.1 
7.0 

- 3 . 7 
- 3 . 5 
- 0 . 2 

1.1 
1.6 
0.0 
2.7 
0.4 
0.2 
0.0 
0.6 

6.3 
0.2 

3 

- 8 . 9 
5.7 
5.3 
2.1 
7.0 

- 3 . 7 
- 3 . 5 
- 0 . 2 

1.1 
1.6 
0.0 
2.7 
0.4 
0.2 
0.0 
0.6 

6.3 
0.2 

Orbital 
4 

OPT 
7.0 

- 3 . 7 
- 3 . 5 
- 0 . 2 
- 0 . 3 

1.5 
0.0 
1.2 

MBLD 
0.4 
0.2 
0.0 
0.6 
0.0 
0.1 
0.0 
0.1 

Ab Initio* 
0.2 
0.5 

. _ 
5 

308.3 
-153.2 
-151.4 

3.7 
7.0 

- 3 . 7 
- 3 . 5 
- 0 . 2 

294.2 
-147.3 
-145.1 

1.8 
0.4 
0.2 
0.0 
0.6 

-180.9 
0.2 

4 

0.3691 
0.0000 
0.0000 
0.6031 

- 0 . 0 0 0 5 
- 0 . 0 0 0 5 
- 0 . 0 0 0 5 

0.3691 
0.0000 
0.0000 

- 0 . 6 0 3 1 
- 0 . 0 0 0 5 
- 0 . 0 0 0 5 
- 0 . 0 0 0 5 

6 

308.3 
- 1 5 3 . 2 
- 1 5 1 . 4 

3.7 
7.0 

- 3 . 7 
- 3 . 5 
- 0 . 2 

294.2 
- 1 4 7 . 3 
- 1 4 5 . 1 

1.8 
0.4 
0.2 
0.0 
0.6 

- 1 8 0 . 9 
0.2 

Eclipsed MBLD 
1 

0.3577 
0.5591 
0.0000 

- 0 . 2 1 9 0 
0.7115 

- 0 . 0 1 2 3 
- 0 . 0 1 2 3 
- 0 . 0 0 5 7 

0.0505 
0.0000 

- 0 . 0 0 4 2 
0.0238 
0.0238 

-0 .0347 

7 

- 5 6 9 . 0 
278.1 
278.3 

- 1 2 . 6 
7.0 

- 3 . 7 
- 3 . 5 
- 0 . 2 

- 6 1 3 . 0 
301.4 
302.6 
- 9 . 0 

0.4 
0.2 
0.0 
0.6 

360.9 
0.2 

4 

0.3692 
0.0000 
0.0000 
0.6031 

- 0 . 0 0 0 6 
- 0 . 0 0 0 6 
- 0 . 0 0 0 6 

0.3692 
0.0000 
0.0000 

- 0 . 6 0 3 1 
- 0 . 0 0 0 6 
- 0 . 0 0 0 6 
- 0 . 0 0 0 6 

Total 

35.5 
- 1 9 . 1 
- 1 7 . 4 

- 1 . 0 
41.7 

- 2 0 . 7 
- 2 1 . 0 

0.0 

- 2 3 . 0 
12.2 
12.4 
1.6 
2.4 
1.1 
0.0 
3.5 

17.2 
1.7 

« Units are au X 10"4. h R. M. Pitzer, J. Chem. Phys., 41, 2216 (1964). 

The question naturally arises: How realistic are our 
optimized semiempirical geometries? Stevens' geom­
etries,22 which are closer to the experimental results, 
predict that accompanying the rotation from staggered 
to eclipsed are a decrease of 0.002 A in the RCn and in­
creases of 0.016 A and 0.3°, respectively, in the CC 
bond length and CCH angle. His barrier is 3.3 kcal/ 
mol. Thus, even though our bond lengths are clearly 
too short, our angular distortion and the magnitude of 
the deviation of our barrier from experiment are quite 
similar to the values from the ab initio calculation. For 
this reason, we assume that a realistic barrier interpre­
tation may be given with the INDO results. 

Energy localization with the Edmiston-Ruedenberg 
method2 yields for both rotational isomers one CC 
bond orbital and six equivalent CH bond orbitals. 
These appear in Table II, and it follows that the local­
ized distributions of positive charge can be obtained 
from (1). Each neutral distribution is referred to as a 
bond. Note that only one CH orbital is presented for 
each case, the others being defined by symmetry. We 
have shown elsewhere that INDO-localized orbitals are 

in good agreement with existing ab initio localized or­
bitals.23 

Bonds are numbered the same way in both calcula­
tions and appropriate spatial locations relative to the 
given orbitals may be determined using Figure 1. For 
example, bond 7 is the CH bond trans (cis) to bond 1 in 
the staggered (eclipsed) rotamer. 

Repulsive and Quasiclassical Two-Center Attractive 
Bond Interactions. CH Bonds. The net changes in the 
repulsion energies of the CH bond, Agi and AGi, which 
appear in the last column of Table III, follow the same 
trend as the total repulsion energies; i.e., gi and d are 
smaller for the eclipsed isomer in the OPT calculation 
and smaller for the staggered isomer in the MBLD 
calculation. The corresponding quasiclassical two-
center attractions, Vi, display exactly opposite trends. 
This disparity between the OPT and MBLD results 
can be understood by examining the inter- and intra-
bond partitioning given in Table III. 

(23) W. England and M. S. Gordon, J. Amer. Chem. Soc, 91, 6864 
(1969). 
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AtZ1(A) 
AtZ4(A) 

AtZ1(A) 
AtZ4(A) 

1 

- 2 . 6 
- 9 . 8 

- 1 0 , 8 
- 0 . 5 

2 

- 0 . 6 
- 0 . 1 

0.1 
0.0 

3 

0.1 
- 0 . 1 

0.0 
0.0 

4 

OPT 
0.1 

- 0 . 1 

MBLD 
0.0 
0.0 

5 

4.1 
- 9 . 8 

5.5 
- 0 . 5 

6 

- 6 . 1 
- 0 . 1 

- 4 . 0 
0.0 

7 

- 6 . 1 
- 0 . 1 

- 4 . 0 
0.0 

8 

13.1 
- 0 . 1 

9.5 
0.0 

Total 

2.0 
- 2 0 . 2 

- 3 . 7 
- 1 . 0 

Units are au X 10-4. 

In both calculations changes in Vu, gu, and Gh in­
volving the same bond (/ = 1) or nearest-neighbor 
bonds (i = 2, 3, 4) are two orders of magnitude smaller 
than those between the vicinal bonds (/ = 5, 6, 7), which 
are rotated relative to one another. Among the latter, 
it can be seen that differences between the OPT and 
MBLD interactions for the gauche bonds (/ = 5, 6) are 
lower in magnitude than those for the coplanar bonds 
(?' = 7, cis or trans) by about a factor of 3. In fact, the 
opposite trends observed in the quantities AKi, AGi, 
and Agi are seen to be primarily covered by the differ­
ences between the OPT and MBLD coplanar bond in­
teractions (i.e., the interaction between bonds 1 and 7). 
It is important to note, however, that total changes in 
the electrostatic energy 

ARU = AVu + AGn + Agu (24) 

closely follow the same pattern in both calculations. 
Thus, the overall effect of the geometry optimization on 
the ARu is far different from its effect on the quantities 
AKi,-, AGi,, and Agu separately. The similarity of the 
ARH(OPT) and ARu(MBLD) values, coupled with the 
opposite behavior of the individual terms, shows that 
the magnitudes of AVu, AGu, and Agu all change in 
nearly the same ratio in going from the OPT to the 
MBLD calculation. This result can be understood by 
considering the approximate equalities 

AGu « Ag11- « -V2AK1,- (25) 

which are observed in both calculations. The first re­
lation (AGi, « Agu) shows that, with regard to changes 
in repulsion, the positive and negative charge distribu­
tions of each bond behave in essentially the same way, 
while the second equality shows that changes in the 
quasiclassical two-center attractions between the posi­
tive and negative charges of bond pairs oppose and al­
most cancel these repulsions. Thus, certain results 
which are rigorously true for rigid bond distributions 
(those whose shape and volume are unchanged) which 
do not overlap obtain to a good approximation within 
the real molecule. These electrostatic changes, there­
fore, give the appearance that the electrons are localized 
near the cores of the bond and, furthermore, repulsions 
among electrons localized near the same core (i.e., two 
adjacent bonds) are almost independent of the confor­
mation. It should be well noted that the quasiclassical 
electrostatic one-center terms (those in Uf(A)) have not 
been included in this discussion, nor have the inter­
ference electrostatic attractions (those in /3<(A, B)). 
Finally, we feel that the first approximate equality (25) 
gives special credence to our partitioning of the positive 
charge distribution. 

CC Bonds. All electrostatic quantities K4*, G4;, and 
gu are virtually independent of the conformation in the 

MBLD calculation, but AVu, AGu, and Agu in the 
OPT calculation are all seen to change. Upon ro­
tation from staggered to eclipsed ethane, the repulsive 
interactions decrease and the attractive interactions 
increase, in keeping with the fact that the C-non-
bonded H bond lengths are slightly longer in the eclipsed 
isomer, whereas both the C-C and the C-bonded H 
bond lengths are unchanged. Since approximate 
relations similar to (25) are also satisfied here, a parallel 
analysis can be used to show that changes in either the 
OPT or MBLD AK4,, Ag4,, and AGu values can be con­
sidered to arise from electrons localized near the cores, 
and interactions involving pairs of electrons localized 
near the same centers are the same in both isomers. 
Furthermore, it follows from 

AK4(OPT) 

AG4(OPT) 

AK1(OPT) 

AG1(OPT) (26) 

Ag4(OPT) « Ag1(OPT) 

that the OPT CC bond contributes almost as much to 
the total changes observed in the repulsion energies and 
the quasiclassical two-center attraction energy as does an 
OPT CH bond. 

Comparison of MBLD and Ab Initio Repulsions. 
The ab initio localized valence-orbit&\ electron re­
pulsions reported by Pitzer13 are reproduced in the last 
two rows of Table III. Since his geometry24 is very 
close to the MBLD geometry, the Agu values can be 
considered the same as those for MBLD. His barrier is 
3.3 kcal/mol. 

There is only fair agreement between the MBLD and 
Pitzer AGi; values, but the AG4; values are almost iden­
tical. The ab initio AGi is due to changes in the repul­
sions between geminal CH bonds, while the MBLD 
AGi is only about 50% due to such repulsions, the re­
mainder being due to repulsions from the vicinal CH 
orbitals. 

The most striking difference between the two calcula­
tions is that the approximate relation AGy « AgM does 
not hold for the ab initio CH orbitals. In view of the 
discussion previously given, it may be that in INDO 
repulsion integrals approximate such that the electrons 
are associated too closely with the cores; i.e., the short-
range repulsions are underemphasized. The more per­
tinent comparison of our OPT results with those for an 
ab initio geometry-optimized calculation is not pres­
ently possible. 

One-Electron One-Center Energies. CH Bonds. The 
one-center contributions to the OPT and MBLD CH 
bonds (Table IV) are very similar except on the bonded 

(24) R. M. Pitzer and W. N. Lipscomb, /. Chem. Phys., 39, 1995 
(1963). 

England, Gordon / Localized Charge Distributions and the Ethane Barrier 



4654 

Table V. One-Electron Interference Energies0 

OPT MBLD OPT MBLD 

A(Si(I, bonded H's) 0.2 - 1 . 6 A/3i(5, nonbonded H's) 2.2 1.5 
Aft(l,5) 2.9 4.2 Aft(6, 7) + 2Aft(6, 8) 0.0 - 0 . 1 
Aft(l, nonbonded H's) - 1 . 6 - 1 . 3 Aft 7.8 7.3 
Aft(2, geminal H's) - 1 . 2 0.0 2A/34(C, bonded H's) 9.1 1.1 
A(3i(2, vicinal H's) 6.5 5.9 AWl, 5) -19 .5 - 1 . 0 
Aft(3,4) 0.0 0.0 2AMQ nonbonded H's) 12.4 1.2 
2Aft(3, vicinal H's) 0.0 0.1 A/34(geminal H's) - 0 . 1 0.0 
Aft(5, bonded H's) - 1 . 2 - 1 . 4 A/34(vicinal H's) - 0 . 1 0.0 

A/34 1.8 1.3 

" Energies in au X 10 - 4 . 

carbon (Ci). Since 
8 

Y AfZ1(A) = 4.6 X 10-" au (OPT) 
A = 2 

and 

EALZ1(A) = 7.1 X 10-* au (MBLD) 
A = 2 

it is apparent that the difference in A[Z1(OPT) and 
AfZ1(MBLD) arises from the difference in AfZ1(I) for the 
two calculations. Changes in fZ,(A) may be due either 
to changes in hybridization (per cent s character) and/or 
to changes in the net electron density on atom A due to 
orbital / (Pi(A)). Since 

AP1
0^(I) » APiMBLD(l) « -0.0004 

and since there is virtually no difference in the CH or­
bital between MBLD eclipsed and staggered ethane, one 
can conclude that the change in [Z1(I) due to density 
changes « —0.0011 au in both calculations. Since 
AtZ1

0^(I) ~ - 0.0003 au, it becomes clear that the differ­
ence between the A[A(l)'s, and hence the difference be­
tween the AfZx's themselves, is due to the fact that the 
OPT CH orbital is of slightly increased 2s character in 
the staggered isomer. This follows from the fact that 
fZ2s,2S < fZ2p,2P. Another interesting point is that in 
both calculations the contribution of the trans (or cis) 
hydrogen (8) is effectively canceled by the two gauche 
hydrogens (6 and 7), and similarly 

AP1(S) + AP1(I) + AP1(S) « 0 

CC Bonds. Here, too, a difference between the two 
calculations arises because of differing contributions 
from bond carbons since, apart from the increases on 
the carbon cores in the OPT case, all one-center con­
tributions are independent of conformation. For the 
CC bonds 

AP4
0PT(1) « 0.0002 

so here the density change favors the staggered rotamer. 
Since AfZ4

OPT(l) favors the eclipsed conformation, 
A[Z4

OPT(l), and hence AfZ4
0PT itself, is due to the in­

creased 2s character in the eclipsed form. 
The 2s character can be related to distortions in the 

HCC and HCH angles by considering hybrids on the 
carbon atoms. Let 

ti = cos a(2s) + sin a(2pz) (27) 

represent the hybrid pointing toward the other carbon 
and let 

ti = cos /3(2s) + sin ,3(2p<) (28) 

be one of three equivalent hybrids which point approxi­
mately toward the hydrogens. The functions 2p4 are 
linear combinations of the Ipx, 2p„, and 2pz orbitals, 
with a — /3 = 60° for pure sp3 hybrids. We require 
these hybrids to be mutually orthogonal 

§ti(\)tIY)AV1 = cos a cos /3 + 

sin a sin /3 cos 6 = 0 (29) 

where 8 is the angle between hybrids t{ and t,. Sim­
ilarly, for two CH hybrids tt and t, 

ft ^)Ij(I)AV1 = cos2 /3 + sin2 /3 cos 0 = 0 (30) 

4> being the angle between hybrids tt and t}. Equation 
29 gives 

tan a tan /3 = -1/cos 6 (31) 

while (30) results in 

tan S = l/(-cos</>),/2 (32) 

Recalling that a small decrease in the HCH angle oc­
curs upon rotation from staggered to eclipsed, one 
finds a decrease in — cos <$> if the hybrids at least partially 
follow the compression. This corresponds to a de­
crease in cos j3. Assuming the hybrid tz remains 
pointed toward the other carbon and since both tan /3 
and the HCC angle increase, one finds that cos a in­
creases. Finally, if this reasoning may be directly car­
ried over to the case of localized orbitals, the 2s char­
acter of the CC orbital should increase and the 2s char­
acter of the CH orbital should decrease upon rotation 
from staggered to eclipsed. This is, indeed, just what 
we observe, and therefore we attribute it to the angular 
distortions. 

One-Electron Interference Energies. Table V con­
tains the one-electron interference energy differences, 
AjS4(A, B), for CH and CC orbitals obtained in both the 
OPT and MBLD calculations. For each localized 
orbital, the interference terms are grouped according 
to particular types of atom pairs. For example, the 
interactions between core 2 and its geminal hydrogens 
3 and 4 (see Figure 1) comprise one grouping referred 
to as A/3i(2, geminal H's), while the interactions be­
tween carbon 1 and its bonded hydrogens sum to give 
AiS1(I, bonded H's). In this spirit each group consists 
of interactions between cores or groups of cores which 
are either neighbors, next neighbors, or next to next 
neighbors; i.e., the interactions are grouped according 
to range order. 

CH Bonds. Within a particular group, the energy 
changes quoted for the OPT calculation are seen to be 
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Aft(2, 8) = 43.2 

Aft(2, 6) + Aft(2, 7) = 

Aft(2, 8) = 38.2 

Aft(2, 6) + Aft(2, 7) = -

-36.7 

-32.2 

(OPT) 

(OPT) 

(MBLD) 

(MBLD) 

quite similar to those for the MBLD calculation; thus 
the groups of CH bond energy differences are not 
greatly affected by geometry optimization. As can be 
seen from Table V, in both calculations Aft is primarily 
due to changes in the interference energy between the 
bonded hydrogen and those hydrogens vicinal to it. 
Specifically, as can be verified by comparing the ap­
propriate coefficients in Table II, it is found that in the 
staggered conformation there is constructive interfer­
ence, or covalent binding (ft(2, 8) is negative), between 
the bond and trans hydrogens and destructive interfer­
ence, or ariticovalent binding (/3i(2, 6) is positive), be­
tween the bond hydrogen and each of the two gauche 
hydrogens. In the eclipsed conformation, on the other 
hand, there is destructive interference between the bond 
and cis hydrogens and constructive interference be­
tween the bond hydrogen and each of its gauche hy­
drogens. Thus, in either calculation and in both iso­
mers, it emerges that within a given CH orbital there is 
interference antibinding between the bond hydrogen 
and the vicinal hydrogen(s) nearest it and interference 
binding between the bond hydrogen and the vicinal hy­
drogen^) farthest from it. Furthermore, from the re­
lations 

and 

the preference for the staggered isomer is seen to be due to 
the change from constructive to destructive interference 
between that portion of the orbital localized near the bond 
hydrogen and the "tail" or overflow portion of the orbital 
near the coplanar hydrogen. As will be seen later, this 
result is very important in connection with the total 
barrier. A final point worth noticing is that, unlike the 
behavior discussed in previous sections, the present 
findings necessarily owe their existence to the fact that 
the localized orbitals are not totally confined to two 
centers; i.e., these results are due to a generalized "hy-
perconjugation" in which there is a significant overflow 
of charge density from a a bond to nonbonded vicinal 
atoms. This same behavior has been observed for 
paraffins in localized bond studies by Pople and 
Santry,25 who stressed its importance with regard to 
vicinal interactions and stated its correspondence to the 
"second order hyperconjugation" discussed by MuIl-
iken, et a/.26 Peters27 noticed this same behavior in yet 
another context and termed it "sigma-conjugation." 

CC Bonds. The total change in the interference 
energy of the CC bond, A/34, is seen to be small in both 
calculations, but for different reasons. All contri­
butions in the MBLD case are small, while in the OPT 
case this is true only of changes in the hydrogen-
hydrogen interferences. The effect of the changed HCC 
angle on the OPT CC orbital is to increase the mag­
nitude both of the constructive interference between 
the two carbons and the destructive interferences 

(25) J. A. Pople and D. P. Santry, MoI. Phys., 7, 269 (1963); 9, 301 
(1965). 

(26) R. S. Mulliken, C. A. Rieke, and W. G. Brown, / . Amer. Chem. 
Soc, 63, 41 (1941). 

(27) D. Peters, J. Chem. Soc, 3026 (1965). 

among the carbon and hydrogens relative to the stag­
gered conformation, but in such a way that the net 
effect is small. Therefore, the geometry optimization 
affects the CC bond interference only in a "local" 
manner, there being no net change because of a cancel­
lation which involves groups of different range inter­
actions. 

Bond Energy Analysis of the Barrier. Table VI 
lists energy changes already analyzed, but with slight 
differences due to round off in previous tables. The 

Table VI. Bond Energy Contributions" 

Orbital AUi A(3< ARi Ae i 

1 2.0 
4 -20 .3 

1 - 3 . 7 
4 - 1 . 1 

" Units are au X 10-4. 

OPT 
7.9 
1.9 

MBLD 
7.2 
1.4 

- 1 . 0 
0.0 

1.6 
3.5 

8.9 
-18 .4 

5.1 
3.8 

last column lists the total bond energy changes, which 
are defined as 

Ae1 = AU, + Aft + AR1 (33) 

in keeping with (14). 
OPT Calculation. There is opposition between the 

CC and CH bonds, the total energy of the CH bond 
favoring the staggered conformation largely because of 
the Aft- term, and the total energy of the CC bond favor­
ing the eclipsed rotamer because of the A[Z4 term. 
Moreover, the CC bond changes by a magnitude twice 
that of the CH bonds: the deciding factor, then, is 
not that the CC bond is unchanged, but rather that 
there are six CH bonds involved. The interpretation 
of the barrier is that the CC bond favors the eclipsed 
rotamer due to its slightly increased 2s character, while 
the CH bonds favor the staggered conformation because 
of the increased constructive interference between elec­
trons localized near the bond and coplanar hydrogens. 
The interference change, though smaller in magnitude, 
dominates because it occurs in each CH bond. 

MBLD Calculation. Upon internal rotation, the 
MBLD CC bond changes much less than in the OPT 
case. This agrees with Pitzer's results15 and is usually 
assumed when interpreting the ethane barrier. Fur­
thermore, Ae4 parallels the change in the CH bonds. 
This is fundamentally different from the OPT results, 
where the CC bond was found to strongly favor the 
eclipsed rotamer. Therefore, the MBLD barrier is 
due almost entirely to the CH bonds and these bonds 
favor the staggered isomer for the same reason as in the 
OPT calculation. 

Interference Energy Analysis of the Barrier. The 
present discussion rests on the substantial energy 
changes predicted by both calculations due to the 
differing interferences in the CH bonds between the 
bond hydrogens and those vicinal to them. These 
effects were shown to favor the staggered conformation 
and, in particular 

6Aft(2, vicinal H's) = 
39 X 10-

6Aft(2, vicinal H's) = 
35.4 X 10-4 au 

au « 109% of barrier (OPT) 

101% of barrier (MBLD) 
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From this point of view, the OPT and MBLD barriers 
are seen to have a common origin; namely, each is due 
to a one-electron, two-center interference effect in­
volving the CH orbital in which the part of the orbital 
localized near the bond hydrogen interferes with that 
portion of the same orbital localized near the vicinal hy­
drogens, and this interference favors the staggered con­
formation. The importance of the total change in /3 
among nonbonded hydrogens as regards the barrier has 
also been observed in CNDO calculations.7-17 Again, 
it is emphasized that these effects could not occur if the 
orbitals were truly confined to two centers; i.e., they are 
due to an overflow of electrons onto centers outside the 
bond. 

It is of interest to compare the INDO results with the 
ab initio calculation of the barrier by Pitzer.15 Ex­
plicit calculation of the ab initio interference energies 
gives 

A/3i(2, 8) = 49.1 X 10-" au 

A/3i(2, 6) + A/3i(2, 7) = -41.9 X 10"4 au 

Thus, changes in the interference energies among vicinal 
hydrogens within the CH bonds (Al) give rise to a con­
tribution to the barrier of 43.1 X 1O-4 au in the ab 
initio calculation. This amounts to about 83% of the 
barrier. In this case it is possible to separate the kinetic 
energy and electron-nuclear attraction energy contri­
butions to A/. One then finds 

A/(nuclear attraction) = -40 .0 X 10"4 au 

Thus, we conclude that all barriers (MBLD, OPT, and 
ab initio) are primarily due to a two-center interference 
electron-nuclear attraction within the CH orbital in 
which the part of the orbital localized near the bond hy­
drogen interferes with the "tails" of the same orbital on 
the vicinal hydrogen; this effect favors the staggered 
isomer. 

It is interesting to note that in the ab initio calcula­
tions, the one-electron overlap energy part of the inter­
ference term, A/, is approximately equal to the total 
barrier. This result implies that that part of the inter­
ference energy neglected by INDO opposes the barrier. 

Hyperconjugation. Lowe28 has recently suggested 
an explanation for the ethane barrier in terms of the 
delocalized canonical molecular orbital (CMO) rep­
resentation. He found that the doubly degenerate 
pairs of CMO's corresponding, respectively, to pseudo-7r 
bonding (more stable in eclipsed isomer) and pseudo-7r 
antibonding (more stable in staggered isomer) were 
largely responsible for the barrier, the nondegenerate 
CMO's being unimportant. By then considering the 
methyl groups as hyperconjugative extensions of the 
molecule, he deduced that staggered ethane is preferred 
for the same reason ?ra«x-butadiene is preferred.29 

Since, in analogy to our discussion, his arguments also 
involve interactions between hydrogen Is functions at 
opposite ends of the molecule, one might wonder if these 
delocalized results are traceable to their localized ana­
logs.30 

This indeed turns out to be the case, for we find that 
Xj contains no contributions from the degenerate or-

(28) J. P. Lowe, / . Amer. Chem. Soc, 92, 3799 (1970). 
(29) R. Hoffmann and R. A. Olofson, ibid., 88, 943 (1966). 
(30) In fact, this did not occur to us; we are grateful to an anonymous 

referee who suggested the possible connection. 

bitals in either of our calculations, while 

X1 = (1/Vi)[A + E + E'] (34) 

in all cases. Here, A is a linear combination of the 
nondegenerate CMO's, £ is a linear combination of the 
two degenerate pseudo-7r bonding CMO's, and E' is a 
linear combination of the two degenerate pseudo-x 
antibonding CMO's. For the OPT case, we have 

A = ±(0.5457)^ - (MVl)A' - (0.4494M" (35) 

while for MBLD 

A = ±(0.5667)^ - (Wl)A' - (0.4228M" (36) 

with the plus (minus) sign taken for the staggered 
(eclipsed) isomer. The A, A', and A'' represent respec­
tively, the lowest, intermediate, and highest of the pre­
viously mentioned nondegenerate CMO's found by 
Lowe to be unimportant for the barrier. We see, then, 
that the hyperconjugate effects he observed will appear 
only in our localized CH orbitals. 

The interference energy from the "tails" can be 
written 

Aft(2, vicinal H's) = A/3A(2, vicinal H's) + 

A/3D(2, vicinal H's) (37) 

where A/3D(2, vicinal H's) is the contribution due to the 
functions E and E'. It follows from (34) that A/3D 

arises only from the changes in the pseudo-7r bonding 
and antibonding CMO's which accompany the internal 
rotation, and hence we have isolated the portion of the 
interference energy A/3i(2, vicinal H's) which corre­
sponds to changes in the hyperconjugation of the degen­
erate orbitals. We find for both OPT and MBLD that 
Aj9D(2, vicinal H's) is about 70% of A/3i(2, vicinal H's) 
and hence about 70% of the barrier: the hypercon­
jugate interpretation of Lowe28 using the CMO's is 
largely equivalent to our LMO description in terms of 
"tails." 

In view of the connection between the "tails" and 
hyperconjugate effects,25'27 we should not expect the 
former to be due to the orthogonality of the LMO's. 
Presently we shall demonstrate, at least in a sense, that 
this is indeed the case. To this end we take the MBLD 
results and require the bonds to be perfectly two-center 
by zeroing all coefficients of basis functions not on the 
bonded atoms. These "bond functions" are then sym­
metrically orthonormalized31 for the staggered rotamer 
with the INDO metric. Since the eclipsed orbitals 
differ from those of the staggered conformation only in 
the "tails" (see Table II), the same set of "bond func­
tions" would be obtained if the eclipsed isomer were 
used. The orbitals appear in Table VII and the over­
flow is quite different in the CH orbital, there being no 
"tails" on the vicinal hydrogens. Thus, we see that even 
if we start with two-center bond functions having very 
nearly the same bond polarity as our LMO's, and then 
symmetrically orthonormalize31 them, we do not obtain 
approximations to the LMO's which have the proper 
"tails." In this sense, we say that the "tails" do not 
appear merely because of orthogonality requirements 
(the orthonormal bond functions satisfy these require­
ments, yet have much smaller "tails"), but have some 

(31) P. O. Lowdin.y. Chem.Phys., 18, 365 (1950). 
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Table VII. Orthonormal Bond Functions in Ethane0 

Atomic orbitals 

Ci(2s) 
C,(2p,) 
C,(2p„) 
Ci(2p2) 
H2 
H3 
H4 
C6(2s) 
Cs(2p.) 
0,(2P1) 
C5(2p.) 
H6 
H7 
H8 

1 

0.3518 
0.5660 
0.0000 

-0.2153 
0.7137 

-0.0070 
-0.0070 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

4 

0.3691 
0.0000 
0.0000 
0.6031 
0.0000 
0.0000 
0.0000 
0,3691 
0.0000 
0.0000 
0.6031 
0.0000 
0.0000 
0.0000 

" Units are (bohr)-8-;. 

physical basis. We shall study them further in connec­
tion with bond properties in a forthcoming paper. 

V. Conclusion 

The two sets of INDO calculations are similar in that 
(1) both predict essentially the same total barrier; (2) 
both predict that the change in the quasiclassical two-
center attraction energy approximately cancels the sum 
of the changes in the electron and core repulsion en­
ergies; and (3) both reveal the barrier as being due to 
changes in the one-electron two-center interference en­
ergy between the bond hydrogen and its vicinal hy­
drogens within a CH bond and, in particular, to a 
change from constructive interference between the bond 
and trans hydrogens in the staggered conformation to 
destructive interference between the bond and cis hy­
drogens in the eclipsed conformation. The more 
emphatic differences encountered in the analysis of the 
energy terms are as follows. (1) OPT predicts that the 
total core and electron repulsion energies favor the 
eclipsed conformation, and the total quasiclassical two-
center attraction energy favors the staggered isomer, 
while MBLD makes exactly the opposite prediction. 
(2) OPT predicts that the CC bond energy actually 
changes more than that of a single CH bond and in the 
opposite direction, this change being due to increased 

2s character on the carbon cores in the eclipsed confor­
mation. On the other hand, MBLD predicts a rather 
small change in the CC bond energy, this change being 
in the same direction as that of the CH bonds. Thus, 
even when geometry optimization has little effect on the 
internal rotation barrier, it can nonetheless have im­
portant consequences for the interpretation of the bar­
rier. 

In view of the similarities between the present results 
and those of the ab initio calculations,1522 we contend 
that any description of the barrier to internal rotation 
in ethane which assumes that the electron or nuclear 
repulsion energy favors the staggered form or that the 
CC bond is virtually unchanged may be unrealistic. 
Similarly, the two-center quasiclassical attraction energy 
should favor the staggered rotamer, and changes in this 
quantity should largely cancel changes in the two repul-
tion energies. 

A similar analysis performed on geometry-optimized 
ab initio ethane wave functions may be of interest. In 
addition to the partitioning employed in the present 
work, it would then be possible to undertake a com­
plete inter- and intraorbital partitioning as outlined in 
section I, as well as to investigate such properties as the 
kinetic energy and one-center attraction energies. 

As we mentioned in the introductory section, we feel 
that physical, or qualitative, ideas should accompany 
barrier analyses. We also feel that the present work 
demonstrates the possibility of pursuing this with semi-
empirical wave functions and, as Lowe28 mentions, we 
are of the opinion that these methods may be more 
transparent than ab initio calculations. Furthermore, 
we believe that semiempirical and ab initio methods can 
and should be used to exploit their mutual advantages 
in subservience to the goal of a realistic and broad 
physical understanding. 

Finally, the type of analysis presented in this work 
may also be useful for other barriers and phenomena 
such as keto-enol tautomerism and strain energies in 
cyclic systems. 
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